Impaired Epidermal to Dendritic T Cell Signaling Slows Wound Repair in Aged Skin
نویسندگان
چکیده
Aged skin heals wounds poorly, increasing susceptibility to infections. Restoring homeostasis after wounding requires the coordinated actions of epidermal and immune cells. Here we find that both intrinsic defects and communication with immune cells are impaired in aged keratinocytes, diminishing their efficiency in restoring the skin barrier after wounding. At the wound-edge, aged keratinocytes display reduced proliferation and migration. They also exhibit a dampened ability to transcriptionally activate epithelial-immune crosstalk regulators, including a failure to properly activate/maintain dendritic epithelial T cells (DETCs), which promote re-epithelialization following injury. Probing mechanism, we find that aged keratinocytes near the wound edge don't efficiently upregulate Skints or activate STAT3. Notably, when epidermal Stat3, Skints, or DETCs are silenced in young skin, re-epithelialization following wounding is perturbed. These findings underscore epithelial-immune crosstalk perturbations in general, and Skints in particular, as critical mediators in the age-related decline in wound-repair.
منابع مشابه
Involvement of an NKG2D ligand H60c in epidermal dendritic T cell-mediated wound repair.
Dendritic epidermal T cells (DETCs) found in mouse skin are NKG2D-positive γδ T cells involved in immune surveillance and wound repair. It is assumed that the interaction of an NKG2D receptor on DETCs and an MHC class I-like NKG2D ligand on keratinocytes activates DETCs, which then secrete cytokines promoting wound repair. However, direct evidence that DETC activation through NKG2D signaling pr...
متن کاملDendritic epidermal T cells regulate skin antimicrobial barrier function.
The epidermis, the outer layer of the skin, forms a physical and antimicrobial shield to protect the body from environmental threats. Skin injury severely compromises the epidermal barrier and requires immediate repair. Dendritic epidermal T cells (DETC) reside in the murine epidermis where they sense skin injury and serve as regulators and orchestrators of immune responses. Here, we determined...
متن کاملReduced cell cohesiveness of outgrowths from eccrine sweat glands delays wound closure in elderly skin
Human skin heals more slowly in aged vs. young adults, but the mechanism for this delay is unclear. In humans, eccrine sweat glands (ESGs) and hair follicles underlying wounds generate cohesive keratinocyte outgrowths that expand to form the new epidermis. Here, we compared the re-epithelialization of partial-thickness wounds created on the forearm of healthy young (< 40 yo) and aged (> 70 yo) ...
متن کاملIL-15 Enhances Activation and IGF-1 Production of Dendritic Epidermal T Cells to Promote Wound Healing in Diabetic Mice
Altered homeostasis and dysfunction of dendritic epidermal T cells (DETCs) contribute to abnormal diabetic wound healing. IL-15 plays important roles in survival and activation of T lymphocytes. Recently, reduction of epidermal IL-15 has been reported as an important mechanism for abnormal DETC homeostasis in streptozotocin -induced diabetic animals. However, the role of IL-15 in impaired diabe...
متن کاملPyk2 contributes to reepithelialization by promoting MMP expression. Focus on "Delayed skin wound repair in proline-rich protein tyrosine kinase 2 knockout mice".
Proline-rich protein tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family. We used Pyk2 knockout (Pyk2-KO) mice to study the role of Pyk2 in cutaneous wound repair. We report that the rate of wound closure was delayed in Pyk2-KO compared with control mice. To examine whether impaired wound healing of Pyk2-KO mice was caused by a keratinocyte cell-autonomous defect, the capac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 167 شماره
صفحات -
تاریخ انتشار 2016